Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Fired clay bricks (FCBs) are a dominant building material globally due to their low cost and simplicity of production, especially in low- and middle-income countries. With a projected rising housing demand, commensurate growth in brick demand is anticipated, the production of which could result in significant greenhouse gas (GHG) emissions. Robust models are needed to estimate brick demand and emissions to systematically address decarbonization pathways. Few sources report production values; hence, we present two novel proxy models: (i) a consumption prediction model, relying on country-specific clay extraction data, dynamic building stock modeling, and average material intensity use allowing for projections to 2050; and (ii) a GHG emissions model, using literature-based data and production technology-specific inputs. Based on these models, the current global FCB consumption is estimated as 2.18 Gt annually, resulting in approximately 500 million tCO2e (1% of current global GHG emissions). If unaddressed, this fraction could increase to 3.5–5% in 2050 considering a moderate SSP 2-4.5 climate change mitigation scenario. Consequently, we explored three potential decarbonization pathways: (i) improving energy efficiency; (ii) shifting production to best practices; and (iii) replacing half of FCB demand with hollow concrete blocks, resulting in 27%, 49%, and 51% reduction in GHG emissions, respectively.more » « less
-
Transforming building materials from net life-cycle CO2e emitters to carbon sinks is a key pathway towards decarbonizing the industrial sector. Current life-cycle assessments of materials (particularly “low-carbon” materials) often focus on cradle-to-gate emissions, which can exclude emissions and uptake (i.e., fluxes) later in the materials’ life-cycle. Further, conventional CO2e emission characterization disregards the dynamic effects of the timing of emissions and uptake on cumulative radiative forcing from processes like manufacturing, biomass growth, and the decadal carbon storage in long-lived building materials. This work presents a framework to analyze the cradle-to-grave CO2e balance of building materials using a time-dependent global warming potential calculation. We apply this framework in the dynamic accounting of carbon uptake in the built environment (D-CUBE) tool and examine two case studies: concrete and cross-laminated timber (CLT). When accounting for dynamic effects, the long storage time of biogenic carbon in CLT results in reduced warming, while the slow rate of uptake via concrete carbonation does not result in significant reductions in global warming. The D-CUBE tool allows for consistent comparisons across materials and emissions mitigation strategies at varying life-cycle stages and can be adapted to other materials or systems with different lifespans and applications. The flexibility of D-CUBE and the ability to identify CO2e emission hot-spot life-cycle stages will be instrumental in identifying pathways to achieving net-carbon-sequestering building materials.more » « less
-
Abstract Growing urban populations and deteriorating infrastructure are driving unprecedented demands for concrete, a material for which there is no alternative that can meet its functional capacity. The production of concrete, more particularly the hydraulic cement that glues the material together, is one of the world’s largest sources of greenhouse gas (GHG) emissions. While this is a well-studied source of emissions, the consequences of efficient structural design decisions on mitigating these emissions are not yet well known. Here, we show that a combination of manufacturing and engineering decisions have the potential to reduce over 76% of the GHG emissions from cement and concrete production, equivalent to 3.6 Gt CO2-eq lower emissions in 2100. The studied methods similarly result in more efficient utilization of resources by lowering cement demand by up to 65%, leading to an expected reduction in all other environmental burdens. These findings show that the flexibility within current concrete design approaches can contribute to climate mitigation without requiring heavy capital investment in alternative manufacturing methods or alternative materials.more » « less
An official website of the United States government
